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ABSTRACT

Aortic calcification has been shown to be related to cardio-

vascular disease. In this paper, we present a novel method

for localization and segmentation of thoracic aorta in non-

contrast CT images using dynamic programming concepts to

detect and quantify aortic calcium. The localization and seg-

mentation of the aorta are formulated as optimal path de-

tection problems, which are solved using dynamic program-

ming principles. We apply these methods on Hough space for

aorta localization and a transformed polar coordinate space

for aorta segmentation. We evaluate the proposed approach

by comparing it with the manual annotations in terms of aorta

location, boundary distance, and volume overlap.

Index Terms— Aorta, segmentation, CT

1. INTRODUCTION

Coronary heart disease (CHD) is the primary cause of mor-

bidity and mortality in western societies. Studies have shown

that calcification of the thoracic aorta, aortic arch, and aortic

valve are associated with increased risk of cardiovascular dis-

ease [1, 2]. Prior to including aortic calcium measurements

in cardiovascular risk assessment, longitudinal studies need

to be conducted to assess the incremental value of thoracic

aorta calcium in addition to coronary artery calcium (CAC).

Aortic and coronary artery calcification can be quantified by

non-contrast cardiac computed tomography (CT) [3]. Tho-

racic aorta calcification can be measured from standard car-

diac CAC scans, without requiring any additional scanning,

which is especially advantageous for retrospective studies.

Currently, manual annotation of calcified plaques is the pri-

mary means of extracting quantitative information from non-

contrast cardiac CT images. However, manual tracing is la-

bor intensive and time consuming. Automated aortic1 cal-

cium detection and quantification requires automated meth-

ods for localization and segmentation of the ascending and

descending aorta. Considerable research has been conducted

towards aorta segmentation in Magnetic Resonance (MR) im-

ages [4, 5] but to the best of our knowledge there is no auto-

mated method that addresses aorta segmentation in cardiac

CT scans. This might be attributed to the nature of the non-

1Following references to ’aorta’ imply both ascending and descending

aorta.

contrast CT imaging, which suffers from lack of contrast be-

tween blood pool regions, muscle walls and pericardial fat,

rendering the aorta segmentation quite a challenging task.

In this paper we describe a novel automated method for

segmentation of the thoracic aorta in non-contrast cardiac CT

images and posterior quantification of aortic calcified plaque.

We use dynamic programming concepts to reformulate the

problems of localizing and segmenting the thoracic aorta as

optimal path detection problems constrained by certain cost

functions. The proposed method has two main steps: First,

the approximate position and size of the aorta are estimated by

exploiting the circular shape of the aorta in axial images. We

propose a novel method for aorta localization using Hough

space as a medialness feature space and applying dynamic

programming on that space to find the points corresponding

to the center of the aorta in subsequent axial slices. In the sec-

ond step, we use the estimated position and size of the aorta

to detect refined aortic boundary contours using dynamic pro-

gramming methods. We compare the results of our proposed

method with manual annotations performed by an expert for

geometric (aorta location and boundary) validations.

This rest of the paper is organized as follows: Section 2

provides a detailed description of the proposed algorithms for

automated localization and segmentation of aorta. In Sec-

tion 3, we present validation results on clinical data, and fi-

nally we conclude in Section 4.

2. METHODS

The input data are 3D non-contrast cardiac CT volumes orga-

nized as a stack of 2D axial slices. The vertical range of the

CT volume is assumed to span from the level of pulmonary

artery split at the base of the heart to the appearance of the

diaphragm at the apex of the heart.

2.1. Localization of Thoracic Aorta

The first step towards automated segmentation of the thoracic

aorta is to locate the position and estimate the size of the

aorta in the thoracic CT scans. In spite of heart dynamics,

the aorta maintains its global tubular shape with minor local

deformations. Since the thoracic aorta runs vertically, its ap-

pearance in axial slices approximates a circular shape which

is extracted using Hough transform. A dynamic programming
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method is applied on the Hough spaces of subsequent axial

slices to obtain a series of optimal best-fit circles for the aorta.

2.1.1. Computation of Hough Space

The Hough space is computed by performing a convolution

operation using a circular kernel of radius r, H = E ⊗K,

where H is the Hough space, E is the edge response, and

K is the circular kernel. The edge response is computed us-

ing the canny edge detector. However, to emphasize image

features and reduce the effect of spurious small edges, a non-

linear gray-scale modification is performed by piecewise lin-

ear mapping models. To further smooth the regions of interest

and preserve the edge information, anisotropic diffusion [6]

is performed. Figures 1(a,b) depict the original and enhanced

images, respectively. Since the size of the aorta varies for

different individuals, multiple convolution operations are per-

formed with different kernel radii. Also, instead of applying

the Hough transform on the whole image and selecting two

circles corresponding to the ascending and descending aortas,

we apply Hough transform on two different regions of interest

computed from the anatomical knowledge of relative location

of the ascending and the descending aortas w.r.t. the lungs.

The most probable circles appear as maxima in the Hough

space. However, the global maximum point does not always

correspond to the circle of interest (COI) (Fig. 1(c)). To over-

come this issue, we use a dynamic programming-based ap-

proach to estimate position and size of the aorta in a series of

2D images.

2.1.2. Aorta Location Estimation using Dynamic Program-
ming

To estimate the aortic COIs, we exploit the anatomical prop-

erty that the thoracic aorta runs vertically and assume that

there is little deviation in cross-sectional size and horizontal

positioning of the aorta in subsequent axial slices. The goal

is to select a single point, from the Hough space of each ax-

ial image, that corresponds to the aorta. In terms of dynamic

programming, the problem is reformulated to find an opti-

mal combination of points from the Hough spaces by mini-

mizing a cost function. If there are N axial images in con-

sideration, the solution of dynamic programming is a set P
of N points (P1, P2, P3, ..., PN ) ∈ P, where each point Pi

is represented by x-coordinate, y-coordinate, radius, and z-

coordinate (x, y, r, z). To obtain an optimal combination of

points, the set P should have minimum cost for the cost func-

tion, Cs =
∑N

i=1 C(Pi). The cost associated with each point

is given by,

C(Pi) = ωcCc(Pi−1, Pi) + ωrCr(Pi−1, Pi) + ωvCv(Pi),

where Cc, Cr, and Cv are the cost component terms associ-

ated with the change in horizontal position of circles in ad-

jacent axial slices, the change in radius of circles in adjacent

axial slices, and the Hough value of points in Hough space

respectively. The weights for the respective cost components

are ωc, ωr, and ωv . The term Cc imposes 3D continuity of

medial axis of aorta by constraining the amount of horizontal

shift allowed for aortic circles in adjacent axial slices. The

term Cr imposes a smooth tubular shape by restricting the

amount of change in size of aortic circles allowed in adjacent

axial slices. The term Cv forces selection of circle points with

maximum edge points. Such a dynamic programming scheme

allows us to avoid an exhaustive search for the optimal com-

bination of circle points. To further reduce the computational

cost, we limit our search to M points in each Hough space

with maximum Hough value. This reduces our search space

from U × V ×W × N points (U and V are the x and y di-

mensions axial image and W is the number of different radii

considered) to M × N points. The weights of different cost

component terms in the cost function are obtained experimen-

tally. Figure 1(d) depicts an accurately detected circle from

the Hough space using the dynamic programming method.

2.2. Aortic Boundary Contour Detection using Dynamic
Programming

The goal of this step is to compute refined aortic boundary

contours using the position and size estimates from the pre-

vious step. Using a polar coordinate system, the problem of

finding the aortic boundary reduces to a horizontal boundary

detection which can be efficiently computed using the dy-

namic programming method. The polar image is computed

by considering the centroid of the detected aortic circle as the

origin and the radial extent twice the radius of the detected

aortic circle. A non-linear gray-scale modification is per-

formed followed by anisotropic diffusion to enhance blood

and suppress the rest of the tissues. The aortic boundary is

detected by computing an optimal horizontal path between

the two ends of the polar image. We use a similar dynamic

programming approach as in Section 2.1.2, with the differ-

ence being the formulation of the problem. In this case,

the optimal path is represented as a polyline with L vertices

(Q1, Q2, Q3, ..., QL) ∈ Q. Also, the cost function for the

polar image is expressed as:

C(Qi) = −ωdCd(Qi)− ωgCg(Qi)− ωrCr(Qi−1, Qi),

where ωd, ωg , and ωr are the weights for the intensity cost

component term Cd, the vertical gradient cost component

term Cg , and the continuity cost component term Cr corre-

sponding to vertical distance between pixels on the polyline

in adjacent columns of the polar image, respectively. The

intensity cost component term forces the boundary to fol-

low the homogeneous path through the pixels with higher

blood intensity values. The gradient cost component term

is responsible for moving the boundary towards the points

having strong gradient value in a direction perpendicular to

the boundary. The continuity cost component term restricts

the boundary from taking big steps in the radial direction be-

tween the adjacent pixels along the horizontal boundary. This

term imposes the spatial continuity constraint, smoothing out
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(a) (b) (c) (d) (e)

Fig. 1. (a) Unprocessed original CT image, (b) pre-processed enhanced image, (c) detected circle as global maximum in Hough

space, (d) detected circle using dynamic programming, and (e) boundary contour detected by dynamic programming.

the boundary in the horizonal direction. The continuity term

can be implemented either as the linear or the second order

continuity term. The second order term allows smoother tran-

sitions of the boundary in the vertical direction. The detected

boundary is transformed back into Euclidean coordinates,

providing the refined aortic boundaries (Fig. 1(e)).

3. RESULTS AND DISCUSSION

Dataset: The proposed method was applied on 37 randomly

selected cardiac non-contrast CT scans. The images were

acquired on an electron-beam CT (EBCT) scanner (GE Ima-

tron). For each scan, a stack of 20-36 contiguous slices,

with slice thickness of 3mm each, covering the heart were

acquired. Each image was reconstructed to 512×512 pixels

with a gray value resolution of 16-bit. The pixel sizes ranged

from 0.508mm to 0.586mm.

3.1. Validation results

The proposed localization and segmentation methods are

evaluated by comparing the obtained results with aorta bound-

aries manually annotated by an expert.

3.1.1. Localization of Aorta

To assess the accuracy of the dynamic programming-based

aorta localization method (HD), the centroid (cm) and aver-

age radius (rm) of manually annotated boundary contours are

determined first. The centroid cm of the manual contour (Bm)

is treated as the gold standard for aorta position for validation

purposes. Next, we compute the distance (δα) between the

centroid (cm) and the center point estimate (cα) obtained in

Section 2.1.2. A figure of merit, the relative square distance

error (Dα), is defined as the ratio of the squared distance be-

tween the two aortic positions and the squared average radius,

Dα = δ2
α/r2

m. The measure Dα is used to determine if the

automatically detected aortic center point cα falls inside the

manual aortic contour Bm or not. If Dα < 1, then cα is inside

Bm indicating success, else cα is outside indicating a failure.

The Dα also gives a measure of accuracy of localization by

determining how close the automatically estimated position is

to the manually estimated position relative to the size of the

manual contour. The lower the value of Dα, the greater is

the accuracy of the method in determining the aortic position.

Figure 2 depicts the cumulative Dα (solid line) for the pro-

posed dynamic programming-based aorta localization method

(HD) and compares it against the cumulative Dg (dashed line)

of commonly used method of selecting the global maxima

point in Hough space (HG). The locations of ascending and

descending aortas were estimated inside the manually anno-

tated contours in 94% and 100% of cases, respectively, by the

HD method as compared to 71% and 85% of cases, respec-

tively, by the HG method. In 6% of the cases, our method

could not locate the ascending aorta because the pulmonary

artery exhibited stronger edge responses. However, this can

be easily corrected by either incorporating a priori knowledge

of aorta location relative to the lungs or by placing a start-

ing point manually inside the aorta to guide the dynamic pro-

gramming algorithm.

3.1.2. Segmentation of Aorta

Our automated aorta segmentation method was assessed for

boundary error and volume overlap. The convexity of the

aorta allows us to use the root mean squared radial distance

(R) between the boundaries as a boundary error metric. The

boundary contours are parameterized over θ with the centroid

cm of the manual contour being the center of rotation. The

error metric R is computed as a root mean square distance

between corresponding points on the manual and automated

boundary contours obtained from the intersections of the ra-

dial lines drawn outward from the centroid to the boundary

contours. The radial distance error R effectively captures the

error on the aortic segmentation. Figure 3 depicts the cumu-

lative radial distance errors between automatic and manual

contours for ascending and descending aorta for the proposed

segmentation method (Fig. 3, solid line). To illustrate the

requirement of this additional dynamic programming-based

boundary refinement step (Sec. 2.2), we compare the seg-

mentation results against the Hough circles extracted in the

localization step (Sec. 2.1.2) (Fig. 3, dashed line). It can be

observed that the refined contours follow the aortic bound-

ary more closely than the Hough circles in 86% and 100% of

the cases for the ascending and descending aorta. The 14%

of the cases in which the automated method exhibits infe-
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Table 1. Descriptive statistics of the Dice similarity coeffi-

cient for aorta volume overlap.

DSC DSC Range

Ascending 0.88 ± 0.08 [ 0.68, 0.96 ]

Descending 0.96 ± 0.01 [ 0.91, 0.97 ]

rior results for ascending aorta segmentation are mostly near

the aortic root where the aortic shape, size and tissue contrast

with surroundings changes significantly. These results can be

improved by incorporating 3D surface continuity factor in the

dynamic programming algorithm such that the slices suffering

from low contrast can benefit from stronger edge responses

from the neighboring slices.

The volume overlap is estimated in terms of a well-

known overlap measure, Dice similarity coefficient (DSC),

DSC(Sm, Sa) = 2|Sm
⋂

Sa|
|Sm|+|Sa| , where Sm and Sa represent

manual and automated segmentation methods, and |X| de-

notes the number of voxels labeled by X . Table 1 provides

descriptive statistics of the DSC measure obtained for the

ascending and descending aorta by the automated method.

4. CONCLUSION

A dynamic programming-based method for the automated lo-

calization and segmentation of the thoracic aorta is presented

in this paper. Using the Hough space as a medialness fea-

ture space and applying dynamic programming for tracking,

provides an automatic and robust method to detect the center-

line of symmetric and tubular structures like the aorta. It is

shown that this step introduces a significant improvement in

the localization of the aorta compared to the general approach

of selecting the point of global maxima in the Hough space.

The dynamic programming-based aorta segmentation results

compare well with manually traced aorta boundaries. How-

ever, segmentation of ascending aorta can be further improved

by incorporating 3D surface continuity constraints and allow-

ing more flexibility to deviate from circular shape assumption.

We are now investigating methods to improve the ascending

aorta segmentation specifically.
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